CC-Hunter: Uncovering Covert Timing Channels on WASHINGTON

UNIVERSITY

Shared Processor Hardware TN oC

Jie Chen | Guru Venkataramani | George Washington University | Washington DC, USA

1. Problem Design of Pattern Detection Algorithm

< Covert Channels illicitly leaks sensitive secrets to malicious < Detection on Combinational

parties Structures Recurrent Burst Pattern Detection IvkeImood ra\lu R , i

] S HY
» Trojan (sender) and Spy (receiver) collude to subvert system oy 3 i~ N I I b, v k Al
X . =1 !
security policy ot g gl s g | , N
.. 5 1 8 2 \ 1 \ = |
% Covert Timing Channels % canonion o [g I__/I R | ' V
N - —_— e Ko 01 k k -
» Covert Timing Channels are extremely stealthy o) Event e Event density bins Event density bins Event density bins “ .
» Very Challenging to detect and prevent Step 1 Step 2 Step 3 Step 4 Step 5
Determine At for counting Construct event density ~ Find bursts of Identify significant Check for recurrence of significant
. . - N the # of contention events histogram contention events burst bursts
2. Covert Timing Channel on Hardware An Integer Divider Covert Timing i
Channel example
. .
Combinational structures * Detection on Memory o ;
Transmitting: 10... i Structures Oscillation Pattern Detection
E.g., compute logics and buses
. : = mEE 1
Conflict = contention patterns g L LI LT Leomr 15 Pexxxx XXX XX
MR T Memory structures I o iadl xxx X x e e w0 ww e
Access . » o 4 Lag. Loy
o e £ h,ﬁ 2 ?"V.fﬁ(»“é" E.g., caches Toinsensso [LW . X Conflict misses in chosen cache sets Autocorrelogram Amco";logmm
e 5555855555655 $S55 8 S § sssssss - step 1 Stop 2 Stop 3
. govon ooovo oo
Time Conflict = block replacement "“I"j~s: 00 .5 Identify conflict miss events, and construct conflict Apply autocorrelation to event train, Look for oscillation in the
miss event train for one OS time quantum and construct autocorrelogram autocorrelogram, that is, autocorrelation

. . £7% Cache Contict o coefficients show significant periodicity.
3. How to Detect Covert Timing Channels? ACache Covert Timing Channel example
Detection Framework 5. Hardware Support

Identify the event behind conflicts (contention) + Dedicated auditor unit: [lcm [wlem] % Conflict Miss e % Cache conflicts recorder
CC Auditor e micloery | P Yrel losry Tracker e « Two alternating 128-byte vector registers
. Gathers coverttiming |81 o4t | [e + Tracks cache ooy + record the hardware context ID of the
Construct event train channel related events Dpe s cocne conflict miss o2 Cache replacer ar]d victim
Audits two hardware events + Hardware histogram buffer

events at any give time \ﬁ A practical design p-AN « 32-bit count-down register for At
I:i based on . | « 16-bit register for event density in each At
Shared cache/memory

generation bits Boom « 128-entry histogram

6. Software Support 7. Experimental Setup 8. Experimental Results

Integer Divider L2 Cache Integer Divider L2 Cache Integer Divider L2 Cache

Apply Pattern Detection Algorithms

+ Software API % Cycle accurate full system simulator P

Places a microarchitectural MARSSx86 g
unit under audit « Simulates a Quad core processor, 2.5 GHz, O i
with two hyperthreads)

9255200 400 600 800 1000
tag’

OS does privilege checks

before letting the user to + Test on two realistic covert timing channels
monitor the unit « Integer divider and Shared L2 cache) pandwidh £ o
+ Software monitor % Evaluation uses combinations of o S) b2 osaret (e) mailserver_mailserver
Accumulates all data from + 1/O-intensive Filebench server benchmark i
hardware auditor « Memory-intensive Stream benchmarks (¢) Bandwidth :
Could be scheduled to run =1000 bps

« SPEC2006 CPU benchmarks Mg s (c) gamess._gromacs (f) webserver_webserver

on un-audited cores

Fig. 2 Reaﬁced Obsetw/atIon . 3
Fig. 1 Varying bandwidth Rates Window for 0.1bps Cache Channels Fig. 3 SPEC'06, Stream & FileBench Benchmark False Alarm Test

