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A combination of both modulation ability and light-matter-interaction response are critical for increased Moore’s Law consumption (i.e. E/bit) and 3dB bandwidth (i.e. speed). The performance optimization device dimensions
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to modulate a light signal. S 120mm. on the plasmonic HP MOS mode, which can be modified by altering the geometric parameters of the EOM.
D 110nm 4 Metallic I
i c : | Photonics P.,,—P,,.(V, =Vyn) T(L,ayy) TK
. . . . am | | _ti out\"b ONJ _ . PYONJ 4 _ ON
Refractive IndexX canbe compared to the more recognized electrical imedance equation. The e o renoprasmone i IL = P =1 1T “ont =1 —e”\( P
the formula for the complex refractive index (1) also has two parts: 2 sonm.
The Lossy Factor O  70nm Rf_j—delay]ssugs ER = Paut (Vb = VDFF) . T(L: ﬂsﬂ‘f) - _ E
N / . . § 60 nm - Semiconductor with electronics Paut (Vb — VGN) T,D mod E}p
n=n+ki Z =R+ jwX 2 o electronics
C nm -
© nm - h h h . . .
\— The Phase Factor / = 1 Quantum Regime Indium Tin Oxide EOM We verify a low insertion loss of a mere -1dB/um. The two loss
The real part of the refractive index (n) indicates the speed of the light’s propogating phase, while the 10 nm - \ onm 100am 1un 10w 100um 1o contributions in this device are quantitatively depicted in
. . . . . . . . . . Unm : ! ! | ¢ ¢ : ¢ ¢ \ ° R . . . . °
imaginary part gfthe refractive mglex qguantifies the optical absorptlc?n (i.e., loss) of the media. Changmg 0 200 002 206 2008 2010 20T 201a ArE 018 2000 Device Dimension Figure (a) (left); (1) a device length independent loss originating
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