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Effect of blebbistatin on metabolism

Raw fluorescence with motion artifact motion
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that span the cell membrane are used to transduce B
transmembrane potentials into fluoresced light (shown below). depolatizafon y Frequency content of fluorescent signals with and without blebbistatin m=3 WMMNLW \/U\/\N/[\U\
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dye RH237 is used to reveal RH237 Dye Chemical Structure m=7/
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The wavelet expansion series of a function x(t) can Decomposition Coiflet4 scaling function
A limitation of fast fluorescence imaging is that during contraction be expressed as [4]: ” m=9 J\ij\f‘ﬂ\\. /\

: : : : , : o0 M
registration between the imaging device and the heart is lost. _ S
This results in a large motion artifact in the fluorescence signals. x(1) m;_oo aM”¢M”(t) +m§_w dm”l’”m” (1) _ \J\W\/.M-N\ \
This artifact can be eliminated using pharmacological agents m=10
such as_blebbl_statln, WhICh b.IOCkS gross-brldgg CyC“ng. t? Inhibit aMn — <¢Mn’ X> — EOOO ¢Mn(t)X(t)dt Fluorescence signals were decomposed at each level (m). Analysis was
contraction ~ without interiering Wlth_ electrcal a(?tIVIty [3] _J\l X/\' implemented using the MATLAB Wavelets toolbox™. Left: Signal
However, a goal of our current work is to study the interaction and reconstructed using all details d,, to d,,. Right: Signal reconstructed
between metabolism and electrical activity. dmn — <Wmn’ X> — ﬁooo Wmn(t)x(t)dt Coifletd wavelet function using all approximation coefficients at level m (i.e. a,,).
Contraction and metabolism are intimately linked so our _ L _ _ Reconstruction
objective has been to develop an approach for applying fast where m:scale, n:shift, M :Maximum scale ——
fluorescence imaging to study arrhythmias in contracting hearts. a,,, -approximation coefficients %0, @otomm
d,,,: detail coefficients . . 1 $I LPF @
EX erimental SEtu mission
B a4 Winn are scaling and wavelet functions. e

590nm

blebbistatin)

§ Optical ratiometric approach for
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