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Background and Motivation

I Autonomous control of vehicles is critical for missions
I Typical operations require extensive planning and human interaction
I Vehicles must operate safely in hazardous environments
I Applicable to under-water, aerial, and spacecraft scenarios

I Key technology for autonomy is large angle reorientations in
the presence obstacles
I Spacecraft have sensitive payloads e.g. optical sensors
I Reorient while not pointing in dangerous directions e.g. Sun, Moon

Hubble Agile S/C

I Problem: reorient a vehicle while avoiding certain directions
I Sensor exclusion zone around the Sun
I UAVs manuevering in restricted and congested locations
I Laser emitters on industrial robots

Spacecraft Orientation

I Rigid body attitude dynamics is a classic problem
I Configuration manifold is curved and nonlinear

I Dynamics evolve on the Special Orthogonal Group: SO(3)
I Unique properties: cannot be represented as a linear vector space

I Previous work is based on reduced attitude representations
I Euler angles: 24 possible combinations which suffer singularities
I Quaternions: no singularities but double cover SO(3)

I Geometric control: the development of control systems for
systems evolving on nonlinear manifolds
I Many systems cannot be defined correctly on Euclidean spaces
I Innovative techniques avoid ambiguities and local coordinates and

exactly describe the evolution of the system

Attitude Dynamics

I Spacecraft is modeled as a rigid body rotating about its
center of mass described by the Special Orthogonal Group

SO(3) =
{
R ∈ R3×3 |RTR = I , detR = 1

}
I Euler’s equations of motion govern the dynamics of a rigid

body

JΩ̇ + Ω× JΩ = u + W (R ,Ω)∆,

Ṙ = RΩ̂,

I R ∈ SO(3) defines the orientation of the spacecraft with
respect to an inertial reference frame

I W (R ,Ω)∆ models a wide range of external disturbances
I Solar radiation pressure (SRP)
I Gravity gradient moment
I Air turbulence and gusts
I Unknown mass distribution

Configuration Error Function on SO(3)

I Constraint is defined in terms of unit-vectors on the
two-sphere:

S2 =
{
q ∈ R3 | ‖q‖ = 1

}
I We wish to avoid pointing spacecraft in a particular direction

I Sensitive optical sensor - r ∈ S2 defines the sensor direction
I Constraint direction - v ∈ S2 defines direction to distant object

I Hard cone constraint - strictly avoid pointing sensor towards
the celestial object

rTRTv ≤ cos θ

I Smooth, positive definite function which measures the error
between current and desired configuration

I Error function is the product of two terms

Ψ(R) = A(R)B(R)

I Attractive - drives system towards desired attitude

A(R) =
1

2
tr
[
G
(
I − RT

d R
)]

I Repulsive - forces system away from constraint directions

B(R) = 1− 1

α
ln

(
cos θ − rTRTv

1 + cos θ

)
I Logarithmic barrier function causes the error to grow as rTRTv → cos θ

I B(R)→∞ as the constraint boundary is neared rTRTv → cos θ
I B(R) has little impact on Ψ when far from constraint as the logarithmic function quickly decays
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Configuration Ψ

I We can easily generalize this technique to an arbitrary number of constraints

Ψ = A

[
1 +

∑
i

Ci

]
where Ci = B − 1

I Lyapunov analysis is used to derive an adaptive control scheme which guarantees stability in the face of disturbances and
obstacles

u = −kReR − kΩeΩ + Ω× JΩ−W ∆̄
˙̄∆ = k∆W

T (eΩ + ceR)

Numerical Simulation

I Geometric Adaptive Controller is able to stabilize the rigid body while avoiding multiple constraints with a fixed but unknown
external disturbance

Initial: R0 = exp(225◦ × π

180
ê3) Final: Rd = I Disturbance: ∆ =

[
0.2 0.2 0.2

]T
I The adaptive controller accurately accounts for the disturbance and ensures all constraints are satisfied
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UAV Validation

I Hexrotor UAV developed by the Flight Dynamics and
Controls Laboratory
I Three pairs of counter-rotating propellers
I Attached to a spherical joint to emulate a fully actuated rigid body
I Onboard computer module receives measurements from Vicon motion

capture system and computes control input in real-time

Attitude control testbed

I Hexrotor rotates about vertical axis while automatically
avoiding the obstacle

Initial: R0 = exp(
π

2
ê3) Final: Rd = I
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I Adaptive controller is robust to uncertainties and
disturbances

Conclusion

I Constrained geometric adaptive controller on SO(3)
I Completely avoids singularities and ambiguities
I Geometrically exact and conceptually simple attitude controller
I Automatically satisfies multiple constraints without added complexity

I Obstacle avoidance computed in real-time with on-board
software
I Typical planning methods are only able to determine an obstacle-free

path after multiple iterations and extensive computation
I Large computation costs limit these methods to a priori calculation

and make responsive control impossible
I Randomized search algorithms can only offer a stochastic guarantee of

convergence as the computation time increases

I Our control system is capable of handling any number of
obstacles and offers a rigorous stability proof
I Ideal for challenging scenarios with multiple obstacles or an

environment which requires complex control
I Computationally efficient and ideal for embedded systems with energy

or computation limitations
I Stability proof ensures manuvers always satisfy pointing constraints
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