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Experiments and results

Statistics of FakeNewsNet [2] dataset after pre-processing
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RC58 Number of syllables 0.11 0.03 3.56  FRX
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Current methOdS to StUdy and underStand RC14 Preposition phrase density -0.10 0.03 -3.27  **
fake news phenomenon: Pew Research Center RC16 Adverbial phrase density 009 003 302
RC2 Argument overlap, all sentences 0.09 0.03 286  **
2012 2016 2017 RC24 First person plural pronoun incidence  0.09 0.03 280  **
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social media and online platforms RC31 Third person plural pronown 007 0.03 218 ¥
RC66 Stem overlap, adjacent sentences 0.07 0.03 214 %
RC94 Hypernymy for nouns and verbs -0.06 0.03 -2.05 ¥
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how misinformation spreads

Table 1. Note.***=p < 0.001, ** = p < 0.01, ¥ = p < 0.05. "RCs” are the PCA
components. ”Description” contains the description of the Coh-Metrix index with the

But iS it enoug h? No! Compelling information highest absolute loading value in the corresponding PCA component.
communicates a clear gist and Conclusi d K
causal gist seems to be associated onclusion and Future wor
What we do with spread of online messages ) There are signals that show more causally

coherent stories, including mis-/disinformation,

Artificial Intelligence are more likely to be shared online.

+ * Gist: subjective, but meaningful, interpretation > We are using Natural Language Processing (NLP)
experimentally-validated Py *Verbatim: objective, but decontextualized, facts to implement methods to better measure causal
psychological theories o - coherence for text.
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Why Does Fake News Spread?
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Interested in #FakeNews related updates?
Follow me @PedramHosseini on Twitter.



