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Introduction Dynamics about the asteroid 4769 Castalia Reachability on the Poincaré section

» Spacecraft is operating around 4769 Castalia

» Asteroids and comets are of significant interest . .
» Dynamics are very similar to the famous three-body problem » Discovered in 1989, Castalia is a potentially hazardous asteroid and

» Science - Insight into early solar system formation M _ _

» Mining - vast quantities of useful materials rv_ v passes close to .the Earth . . Y
» Impact - high risk from hazardous Near-Earth asteroids \'/_ g (r) + h (V) +u > Ind19§9, Castalia passed close enough to allow for high resolution —
» Near-Earth asteroids (NEAs) are especially interesting H - lotien SRTI radar imagery
» Huge history of analytical tools allow for great insight into - - - - .
- Orbit close to the Earth and are easily accessible » High resolution shape is used in polyhedral gravity model X

the dynamics

» Analytical insight is critical to understanding the free motion
around an asteroid
» We require an accurate understanding of the motion under the
influence of gravity alone
» Efficient use of the limited oboard fuel is dependent on exploiting the
natural dynamics of the asteroid environment

» Many asteroids hold vast quantities of useful materials
» Asteroid mining: Precious metals, propulsion fuels, semiconductors
» Commercialization is feasible with huge amounts of possible profit

» High probability of future asteroid impacts

» Jacobi Integral - single constant of motion which bounds the
feasible regions in terms of “energy”
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J(r,v) = §w2 (x*+y*) + U(r) — 5 (x> + y*> + 2°) | |
Asteroid 4769 Castalia

Reachability set on a Poincaré section

Asteroid Mini Asteroid | t i i . , . . . .
PRI Tne PErRIT TRet Simulation Results » Poincaré map is a useful tool in the analysis of dynamical
Technical Chall » Transfer between two periodic orbits of 4769 Castalia » Optimal Control is used to calculate the reachability set sys;:erzls S ot o
_ _ _ _ » Combining multiple iterations of the rechability computation allows for J=— (X(tf) — Xn(tf)) Q (X(tf) — Xn(tf)) D 5 . .. .
» Low-thrust propulsion systems offer innovative options ceneral transfers 2 » Rather than considering the entire state (6D position and velocity) we
» Electric propulsion offers much greater efficiency . Combining four iterations of the reachability set » Maximize the distance on the section using the low thrust Simply investigate the inte_rsections wi.th a lower dim.ensional space
~ Allows for greater velocity change with a reduced mass cost » Each iteration of the reachability set enlarges the achievable states propulsion » This reduces the complexity of analyzing the dynamics and allows for

» Key component for long duration missions with frequent thrusting visualization of highly complex dynamic interactions

. . » We choose a direction on the reachability set which lies closest to the » Thruster magnitude is limited by physical system
» Requires new methods of design

» A periodic orbit on the Poincaré map is identified by fixed

_ _ _ _ _ target T 2
» Optimal trajectory design is complicated c(u) =u'u—u, <0 points X,
. . . . L . 2 2 : .2 : . \2 _ _
~ Highly nonlinear and chaotic dynamics requires intuition by designer d = \/kx (xf = xe)" + ke (2r — 2e)" + ki (X — X2)" + k: (2r — 22) » Terminal constraints ensure intersection with the section » Using the low-thrust propulsion system of the spacecraft we
> Using !ow—thrust propulsion afids additional difficulties in accurately » This iterative approach avoids the difficulty in choosing accurate initial M= v =0 can enlarge the space that is achievable
capturing the sma.II perturbatlo.ns | | | guesses for optimization 1= _ ) ) ) ) ) » Reachability Set - the set of states which are attainable subject to the
» Astrodynamic trajectory design typically uses direct optimal my = (sin ¢1,) (Xl + X, + X3 + x4) —x; =0 constraints of the system
control ms = (sin ¢2d) (X22 4 Xg + XE) — 22 — 0 » The thruster of the spacecraft is used to design a transfer trajectory
» Large nonlinear programming problem inherently approximates the by repeatedly maximizing the reachability set
true optimal solution my — (sin ¢3d) 2X32 + 2X3 \/Xf + QXE — X3 — Xz% + x32 — (0 » Thruster allows us to depart from the fixed orbit and intersect at a
» High dimensionality of the solution makes it extremely new state Xx;
computationally intensive » Reachability Set is computed on the Poincaré section and

provides additional insight
» Spacecraft can only move to areas inside of the reachable set

Trajectory

Gravitational Modeling 6

Trajectory
- taroid are extanded b -t pint mases 4l
» Gravity is the key force in orbital mechanics
» An accurate representation of gravity is critical to accurate and o » Demonstrate a transfer around an asteroid using multiple

realistic analysis
» Spherical Harmonic approach is popular but not ideal

reachability sets
» Each reachability set moves the spacecraft towards the target

» Model is only valid outside of circumscribing sphere 2 - » Alleviates the need for selecting accurate initial guesses
» Composed of an infinite series - always results in an approximation I - A ol SRR e foasibl . 6 .
» Model will diverge when close to the surface and is not ideal for 21 0 - > Automatically gain insignt into the teasible region of motion
landing missions -1 - for the spacecraft
+ Polyhedron Gravitational model used to represent the 4| » Future wc_>rk will extend this principle to landing trajectories
asteroid on asteroids
» Gravity is a function of the shape model 6 L » lrregular shape of asteroids requires innovative techniques for
» Globally valid and closed-form analytical solution for gravity 5 0 3 controlling both position and orientation
» Exact potential assumes a constant density assumption i » Nonlinear control allows for the exploitation of the coupled dynamics
» Accuracy is only dependent on the shape Xz » Complex dynamics requires accurate integration schemes - Variational
1 1 (a) Equatorial Transfer Trajectory 3D Transfer Trajectory Integrators
U(r) = EGU E reEeore Lo — §GU E re- Frore-wr » Successful extension of previous work in the circular
ecedges f cfaces

restricted three-body problem
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