Shed: Optimal Dynamic Cloning to Meet
Application Deadlines in Cloud

School of Engineering
& Applied Science

THE GEORGE
WASHINGTON

The George Washington University
Department of Electrical and Computer Engineering

THE GEORGE WASHINGTON UNIVERSIT

.+ Demand for cloud-based processing System Architecture _ Proposed Online Algorithm Theorems

frameworks lcon.tlnuels to grow o \ Algorithm 1: Proposed Online Algorithm - t B.(r;4+1)1Ns

: Cloud applications is becoming I: Upon submission of a new job: su= [1— (min)

Increasingly mission-critical and deadline Launch,."| - 2: Kill all iobs which missed their deadlines] D;)

sensitive, especially in shared clusters - ’ N 3: e {ij2) ;

+ Cloud providers seek efficient : i LT - then ' (1= @)ty Z D]

techni | 5 g o 1 & if[J[==1then = |1 $)Cmin

techniques to meet the SLA P “% - . | A-m—N;—1 & D; — ;

+ A few slow tasks, called stragglers, could 3) RM R— N 3 Tmax = N

. f _> Dynamic Clonin m—mm s 6: 7'1 — .rmax .

significantly impact job execution time - y g , . ; Concl

- Scheduler |) :‘ - T else ____vonciusion

-+ Launching extra attempts (clones) for | S R v i ; S ;

‘each task upon submission can mitigate = Lounch.~”" & T=0V) n s Wwork, we propose ed, an

ot | AM. 05 w =10 ;optlmlzatlon framework that leverages:

STAYFETS 2 N (1) n=)\-m—§:i’ N; —|J]| dynamic cloning to jointly maximize PoCD

*+ This work proposes Shed, an o Sk Calelate By V) and cluster utiization. We a t an

optimization framework that leverages O 12: ,h°c|u 36 'j(b]d anll clus ﬁr du : |zat;]or;.d ° a.so”presetp an

@dynamic cloning to jointly maximize jobs’ | e an ‘3: e f,e_ #1 .} -{OR.} online scheduler tha byna.mllcaoy op Ilnzllze

Probability of Completion before Deadline = " ?f &a'rf m?ﬁ t‘;‘ n .reslogrces UPO”I_”eW 10 darrlvla ' _ﬂl:r Sf[) uf!(’g

(PoCD) by fully utilizing the available S S heludes an oniine greedy aigorthm 10 1ind,

rESOUICES IS J=J-1{i'} the optimal number of clones needed for

e e e e e e e e - J OlntPOCDOpt]le&thIl _____________________________ 16 else each job. Our results show, in some cases,
5 | IF ry =1y +1 that Shed can achieve 100% PoCD

e e S YS@mMOdel_ émaximize z U p° I8: w=w+ Nj icompared to Dolly and Hadoop with§

Consider J ~jobs submitted to the : 09 Calculate H; V) sspeculation. The proposed algorithm is able:

;I\/Iapreduce processing framework. Each; j=1 20 end if to achieve more than 90% utiization of

job j is associated with a deadline Dj that J 21 end while available. eloud resounces, whereas Dolly

is determined by a user. Each job j = s.. Z (rj+1)+|J| <A m 22: end if and Hadoop achieves only about 22%. :

consists of Nj tasks, and it is considered | j=1 2

successful if all its Nj tasks are executed | | R ” Reference

- e DI p; = R;(rj), V3

and completed before the job deadline Dj. « J. Dean et al, 2008

Let Tj denote job j's completion time, and ri 20, Vj . « G. Ananthanarayanan et al, 2013

Tji for i = 1,.Nj be the (andom) . Hvalwaton - EEEEEEEEE AR

completion times of tasks belongs to job j. - -

Any task whose execution time exceeds - oo =%

the deadline is considered a straggler. = o] I £ N e O | R I S SR U= S

Our dynamic cloning approach mitigate ¢

the effect of stragglers by proactively R E— L L T T, T O WS ol SR S— — ——

launching rj extra attempts for each task. 3., a [P oo e

Atask is finished once any one of the rj + 5, Sl og N I s C s S

1 attmepts finishes execution, and then ¢, . -

the other copies are killed. Thus, taks i's =, e = oo |

completion time Tj,i is determined by the | = = o | tedoop I A

completion time of the fastes attempt, i.e., | Number of Clones 0 odine O Exeeution Time (9 00 01702703 04 05 0670.7 08 09

T . T .. Average job execution time versus number of clones PoCD with of 10-tasks jobs using WordCount benchmark CDF for 10-tasks jobs of WordCount benchmark Cluster utilization for 1—tasks jobs of WordCount benchmark
7.t — i jiks Vi, . o
k=1.....r;4+1 i i i
, L J : ——

